Pneumatic Positioner Type 3766

Electropneumatic Positioner Type 3767

Application

Single-acting or double-acting positioners for attachment to pneumatic control valves. Supplied with standardized pneumatic signal 0.2 to 1 bar or 3 to 15 psi (Type 3766) or a standardized electric signal from 4 (0) to 20 mA or 1 to 5 mA (Type 3767).

Rated travels from 7.5 to 120 mm or opening angle up to 90°

JIS

Conversion of valve sizing coefficients:

 C_v (in U.S. gallons/min) = 1.17 · K_{vs} (in m³/h) K_{vs} (in m³/h) = 0.86 · C_v (in U.S. gallons/min)

The positioners ensure a preselected correspondence between the valve stem position (controlled variable x) and the pneumatic or electric input signal supplied by the controller (reference variable w). They compare the reference input signal received from the control device to the travel of the control valve and, depending on the comparison, produce the corresponding pneumatic output signal pressure p_{st} (output variable y). The output from the positioner is the input signal to the actuator. A reversing amplifier (booster) in the double-acting actuators produces two opposed signal pressures.

Special features include:

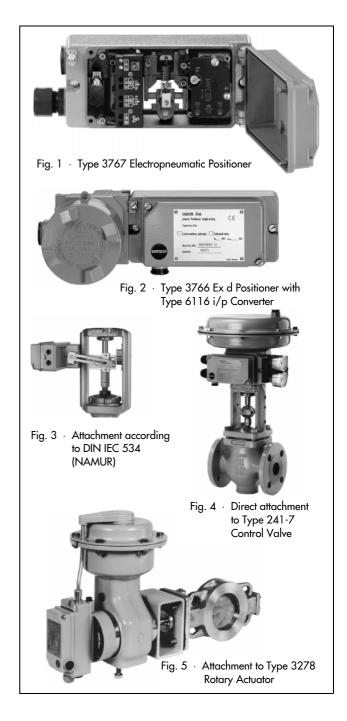
• Compact design requiring very little maintenance; arbitrary mounting position; very insensitive to mechanical vibrations; excellent dynamic response; suitable for normal or splitrange operation; adjustable proportional band (P-band); adjustable air output capacity; low supply consumption; negligibly small supply influence.

For the circuits of the solenoid valves, position transmitters and limit switches and also the signal circuit of the electropneumatic positioner, versions are available for hazardous areas with Type of Protection "Intrinsic Safety" EEx ia IIC T6 (see "Summary of the explosion protection certifications" on page 8). Type of Protection "Flameproof Enclosure" EEx d with Type 3766 Positioner and Type 6116 i/p Converter (Fig. 2).

Special version with case made of CrNiMo steel available.

Direct attachment to Type 3277 Pneumatic Actuator (Fig. 4).

Attachment to actuators according to DIN IEC 534-6 (Fig. 3).


Attachment of rotary actuators according to VDI/VDE 3845 (Fig. 5); double-acting actuators have a reversing amplifier.

Benefits of direct positioner attachment: (Fig. 4)

- Tight and exact mechanical connection between actuator and positioner. No false adjustment during shipping.
- Concealed linkage protected against touch and external influences; therefore, the requirements of the accident prevention regulations UVV (VBG 5) are met.
- Simple pneumatic connection between actuator and positioner
- Presetting of the unit: "Actuator with attached positioner"

Optional pressure gauge for monitoring the input and output signal pressure (scale 0 to 6 bar and 0 to 90 psi).

Details on the selection and application of positioners, converters, limit switches and solenoid valves, see Information Sheet T 8350 EN.

Associated Information Sheet

T 8350 EN

Edition January 2001

Principle of operation (Figs. 6 to 8)

The only difference between the Type 3766 Pneumatic Positioner (Fig. 6) and the Type 3767 Electropneumatic Positioner (Fig. 7) is that an electropneumatic (i/p) converter (E) has been added to the latter in order to convert the electric signal received from a controller into a proportional pneumatic signal.

With the Type 3767 Electropneumatic Positioner (Fig. 7), the dc current signal (i), which is received from a control device, flows through the plunger coil (E2) in the field of a permanent magnet (E1). On the balance beam (E3), the force, which is proportional to the dc current i, is balanced against the force of the back-pressure which is generated on the flapper plate (E7) by the jet stream leaving the nozzle (E6). Any changes of the current signal proportionally vary the input pressure pe supplied to the pneumatic control

With linear-motion valves, the travel and therefore the valve stem position is transmitted to the follower lever (1) via the pin (1.1) and determines the force of the measuring spring (4). When the positioner is attached to rotary-motion valves (Fig. 8), a follower roll (20) is attached to the front end of the lever (1). The rotary motion of the actuator shaft (21) is converted into the linear motion necessary for the pneumatic control system. The cam disk (22) and the follower roll (20) are used for this purpose.

The positioners operate according to the force-balance principle. The force of the measuring spring (4) is compared to the control force, which produces the pressure pe on the measuring diaphragm (5). If the control signal, the pneumatic input pressure (pe) or the position of the lever (1) changes, the diaphragm lever (3) forming the flapper plate varies the distance to the nozzle (2.1 or 2.2). The operating direction (7) selected by the position of the internal turnboard determines which nozzle is effective.

The supply air is piped to the pneumatic amplifier (10) and the pressure regulator (9). The controlled supply flows against the diaphragm lever (3) via the X_p restriction (8) and the nozzle (2.1 or 2.2). Any changes of the control signal or the position of the lever (1) cause a variation of pressure both upstream and downstream of the amplifier (10). The output signal pressure pst released by the amplifier flows to the pneumatic actuator via the volume restriction (11) and causes the diaphragm or control piston to take a position corresponding to the reference input signal.

If the positioner is to be attached to a double-acting, springless (no spring return) pneumatic rotary actuator, the signal pressure (pst) is to be led to a reversing amplifier, which generates two opposed signal pressures (p_{st1} and p_{st2}). The adjustable restrictions X_p (8) and Q (11) are used to optimize the control loop. - Two adjusting screws (6.1 and 6.2) are used to adjust the position of the control valve to the signal pressure. ZERO and SPAN of the reference input signal can be adjusted for deviating operating modes, such as split-range operation.

Operating direction

When the reference input signal (pe) increases, the output signal pressure (pst) can be selected to be increasing-increasing (direct action >>) or increasing-decreasing (reverse action <>). The operating direction is determined by how the board (7) is turned, and is shown on the board. Subsequent modification of the operating direction is possible in the field.

Le

egei	nd to Figs. 6 to 8		
1	Lever	E	Electropneum. converter
1.1	Pin	E1	Permanent magnet
1.2	Rotary shaft	E2	Plunger coil
2.1	Nozzle, direct action (>>)	E3	Balance beam
2.2	Nozzle, reverse action (<>)	E4	Cross spring pivot
3	Diaphragm lever (flapper plate)	E5	Spring
4	Measuring spring	E6	Nozzle
5	Measuring diaphragm	E7	Flapper plate
6.1	SPAN adjustment screw	E8	Restriction
6.2	ZERO adjustment screw	E9	Damping
7	Turnboard for operating direction	E10	Protective diode
8	X _p restriction (gain)		
9	Pressure regulator		
0	Amplifier (booster)	20	Follower roll
1	Volume restriction Q	21	Actuator shaft
2	Solenoid valve (option)	22	Cam disk
	•		

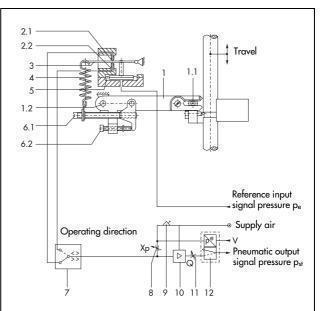


Fig. 6 · Functional diagram of the Type 3766 Pneumatic Positioner (deflection of the pick-off lever when directly attached to the Type 3277 Pneumatic Actuator)

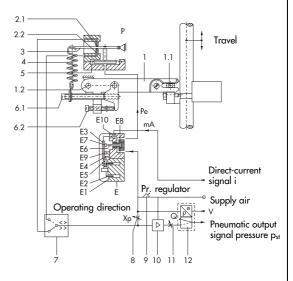


Fig. 7 · Functional diagram of the Type 3767 i/p Positioner

Fig. 8 · How the rotary motion is transmitted to the positioner

Table 1 • Technical data · All pressures in bar (gauge)

When attached according to DN IEC 534 (NAMUR): 7.5 120	Table 1 · Technical dat	•								
When attached according to DNH IEC 534 (NAMUR): 7.5 120	Type 3766 Pneumatic a	nd Type 3767 Electropi	neumatic Po							
Depending on the com, 70°, 75° or 90°	Travel range			When directly attached to Type 3277 Pneumatic Actuator: 7.5 30 mm				.5 30 mm		
Reference input signed v Signed range bor (psi) 0.2 1 bor (3 15 psi)				When attach	ed accor	ding to DIN	IEC 534 (NAML	JR): 7.5	120 mm	
Reference input signed v Signed range bor (psi) 0.2 1 bor (3 15 psi)	Opening angle				Depen	ding on the c	cam, 70°, 75° oi	r 90°		
Span	Reference input signal w	Signal range	bar (psi)		-	0.2 1 bar	· (3 15 psi)			
Septembro Signal Marcon Signal range Marcon										
Reference input signal w Signal range from span 4(0) 20 mA or 1 4 mA Type 3767 i/p Positioner Span 8 20 mA 2 4 mA 2 4 mA Supply air 1.4 6 bar (20 90 psi) 880 Ω Output signal pressure Can be limited between 0 approx. 2.5 and 0 6 bar (0 approx. 35 and 10 fb.		Overload limit								
Type 3767 i/p Positioner Span	Reference input signal w	Sianal range		4(0)	20 m		•		1 5 mA	
Internal resistance at 20 °C 200 Ω 880 Ω				, ,				2 4 n		
Supply air Can be limited between 0 approx. 25 and 0 o bar (20 90 psi)			.0 °C							
Output signal pressure Can be limited between 0 approx. 2.5 and 0 6 bar (0 approx. 35 and 0 approx. 35 and	Supply air					1.4 6 bar	(20 90 psi)			
Characteristic Linear; deviation from terminal-based conformity ≤ 1 %				Can be limited between				annrox .	35 and 0 90 ps	
Sensitivity										
Sensitivity				Ellicai	, actian			Jilliny <u>-</u>	1 70	
Proportional band X _p	•									
Proportional band X _p										
Air consumption Type 3766 Positioner ≤ 200 In/Ih ≥ 200 I				Λ.5	25%			200	401	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						•				
Type 3767 i/p Positioner ≤ 280 ln/h ≤ 280 ln/h ≤ 280 ln/h	All consumption	Turo 2744 De ::::				DUI				
Air output capacity Add air to actuator										
Vent air from actuator 4.5 m _n ³ /h 14.0 m _n ³ /h -20 °C with plastic cable gland; -40 °C with metal cable gland Up to +80 °C (only -20 °C+70 °C with position transmitter) 2 Influence Temperature 3 %/10 K · Supply air: ≤ 1 % between 1.4 6 Electromagnetic compatibility According to EN 50 081 and EN 50 082 Effect of vibration Between 10 and 150 Hz and 4 g, no influence Explosion protection ²⁾ Type of protection EEx ia IIC Degree of protection IP 54 (special version IP 65) Weight Approx. 1 kg	A' I. I		ner							
Permissible ambient temperature	Air output capacity									
Influence Temperature: ≤ 0.3 % / 10 K Supply air: ≤ 1 % between 1.4 6	B 1 11 11					11 1				
Electromagnetic compatibility According to EN 50 081 and EN 50 082 Effect of vibration Between 10 and 150 Hz and 4 g, no influence Explosion protection 2) Type of protection EEx ia IIC Degree of protection IP 54 (special version IP 65) Weight Accessories Limit switches Inductive limit switches (proximity switches) Control circuit Values according to the connected transistor relay Solenoid valve Electrical input Binary dc voltage signal Nominal signal Signal "0" (off) 3) Signal "1" (on) 4) Accessories Analog Output current Analog Output current Accessories Two Type SJ2-SN Two Type SJ2-SN Values according to the connected transistor relay Solenoid valve Electrical input Binary dc voltage signal 6 V dc 12 V dc 24 V dc 34 V dc 35 Signal "1" (on) 4) Signal "1" (on) 4) Signal "1" (on) 4) Signal "1" (on) 4) Accessories Accessories Fignal "1" (on) 4) Accessories Accessories Accessories Accessories Fignal Values Accerding to EN 50 081 and EN 50 082 Between 10 and 150 Hz and 4 g, no influence Two Type SJ2-SN Accessories Accessories Accessories Two Type SJ2-SN Accessories Two Type SJ2-SN Accessories Accessories Five Type SJ2-SN Accessories Acces	Permissible ambient temp	oerature 								
Effect of vibration Between 10 and 150 Hz and 4 g, no influence Explosion protection 2) Type of protection EEx ia IIC Degree of protection IP 54 (special version IP 65) Weight Approx. 1 kg Accessories Limit switches Inductive limit switches (proximity switches) Two Type SJ2-SN Control circuit Values according to the connected transistor relay Switching differential at rated travel ≤ 1 % Solenoid valve Electrical input Binary dc voltage signal Nominal signal 6 V V C 24 V C 32 V 11714 S Active colspan="2">240 cm² 350 cm² 70 70 240 cm² 350 cm² 70 70 10 In/h II 120 cm² 240 cm² 350 cm² <td>Influence</td> <td></td> <td></td> <td>Temperature:</td> <td>≤ 0.3 %,</td> <td>/10 K · Sup</td> <td>ply air: ≤ 1 % b</td> <td>etween 1</td> <td>.4 6 bar</td>	Influence			Temperature:	≤ 0.3 %,	/10 K · Sup	ply air: ≤ 1 % b	etween 1	.4 6 bar	
Type of protection EEx ia IIC	Electromagnetic compati	oility			Accordi	ing to EN 50	081 and EN 50	0 082		
Type of protection EEx ia IIC	Effect of vibration			Be	etween 1	0 and 150 H	Iz and 4 g, no i	influence		
Degree of protection P 54 (special version IP 65)	Explosion protection 2)									
Weight Approx. 1 kg Accessories Limit switches Inductive limit switches (proximity switches) Two Type SJ2-SN Control circuit Values according to the connected transistor relay Solenoid valve Electrical input Binary dc voltage signal Nominal signal 6 V dc 12 V dc 24 V dc 25 V dc 28 V 25 V dc 28 V dc 25 V dc 28 V dc 25 V dc 28 V dc 28 V dc 25 V dc <th colspa<="" td=""><td></td><td></td><td></td><td></td><td>ı</td><td>IP 54 (special</td><td>version IP 65)</td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td>ı</td> <td>IP 54 (special</td> <td>version IP 65)</td> <td></td> <td></td>					ı	IP 54 (special	version IP 65)		
Accessories Inductive limit switches Inductive	Weight					Appro	x. 1 kg			
Inductive limit switches (proximity switches) Control circuit Values according to the connected transistor relay Solenoid valve Electrical input Nominal signal Nominal signal Signal "0" (off) 3) Signal "1" (on) 4) Maximum permissible electrical signal Ari consumed in the steady state Closing time for rated travel and signal pressure range (K_{vs} value 0.14) Analog Analog Output current Values according to the connected transistor relay Solenoid valve Binary dc voltage signal 8 4 20 v	Accessories									
Control circuit Switching differential at rated travel Solenoid valve Electrical input Nominal signal Nominal signal Nominal signal Signal "0" (off) 3 Signal "1" (on) 4 Maximum permissible electrical signal Air consumed in the steady state Closing time for rated travel and signal pressure range (Kvs value 0.14) Analog Analog Output current Values according to the connected transistor relay Salue 3 1 % Salue 3 according to the connected transistor relay Salue 3 1 % Salue 3 1 % Salue 4 12 V dc	Limit switches									
Control circuit Switching differential at rated travel Solenoid valve Electrical input Nominal signal Nominal signal Nominal signal Signal "0" (off) 3 Signal "1" (on) 4 Maximum permissible electrical signal Air consumed in the steady state Closing time for rated travel and signal pressure range (Kvs value 0.14) Analog Analog Output current Values according to the connected transistor relay Salue 3 1 % Salue 3 according to the connected transistor relay Salue 3 1 % Salue 3 1 % Salue 4 12 V dc	Inductive limit switches (p	proximity switches)				Two Typ	e SJ2-SN			
Solenoid valve Electrical input Binary dc voltage signal Nominal signal 6 V dc 12 V dc 24 V dc Signal "0" (off) 3) Signal "1" (on) 4) Maximum permissible electrical signal 28 V Internal resistance R; at 20 °C Air consumed in the steady state Closing time for rated travel and signal pressure range (K _{vs} value 0.14) Type 3277 Pneumatic Actuator $0.2 \dots 1 \text{ bar}$ $0.4 \dots 2 \text{ bar}$ $0.6 \dots 3 \text{ bar}$ Analog Output current Sinary dc voltage signal Binary dc voltage signal Binary dc voltage signal 8 V 24 V dc 24 V dc 24 V dc 25 V 24 V 24 V 06 29.6 V 29.6 V 29.6 V 29.6 V Additionally with positioner "off" 0.5 V 32 V 06 Additionally with positioner "off" 0.5 V 32 V 06 Closing time for rated travel and signal pressure range (K _{vs} value 0.14) Output current Analog Output current Output current A 20 mA	·	· · · · · · · · · · · · · · · · · · ·		Va	lues acco			istor rela	у	
Solenoid valve Electrical input Binary dc voltage signal Nominal signal 6 V dc 12 V dc 24 V dc Signal "0" (off) 3) $\leq 1.2 \text{ V}$ $\leq 2.4 \text{ V}$ $\leq 4.7 \text{ V}$ Signal "1" (on) 4) $\leq 5.4 \text{ V}$ $\leq 9.6 \text{ V}$ $\leq 18.0 \text{ V}$ Maximum permissible electrical signal 28 V 25 V 32 V Internal resistance R _i at 20 °C 2909Ω 5832Ω 11714Ω Air consumed in the steady state Additionally with positioner "off" $\leq 60 \text{ In/h} \cdot$ "on" $\leq 10 \text{ In/h} \cdot$ "o	Switching differential at	rated travel							/	
Electrical input Nominal signal 6 V dc 12 V dc 24 V dc Signal "0" (off) 3) Signal "1" (on) 4) 4 Signal Maximum permissible electrical signal 4 V dc 4 Signal Maximum permissible electrical signal 4 V dc 4 Signal Maximum permissible electrical signal 4 V dc 4 Signal Maximum permissible electrical signal 4 V dc 4 Signal Maximum permissible electrical signal 4 V dc 4 Signal Maximum permissible electrical signal 4 V dc 4 Signal Maximum permissible electrical signal 4 V dc						_ _	· · ·			
Nominal signal $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						Binary dc v	oltage signal			
Signal "0" (off) $^{3)}$ $\leq 1.2 \text{ V}$ $\leq 2.4 \text{ V}$ $\leq 4.7 \text{ V}$ Signal "1" (on) $^{4)}$ $\leq 5.4 \text{ V}$ $\leq 9.6 \text{ V}$ $\leq 18.0 \text{ Maximum permissible electrical signal}$ 28 V 25 V 32 V Internal resistance R _i at 20 °C 2909Ω 5832Ω 11714Ω Air consumed in the steady state Additionally with positioner "off" $\leq 60 \text{ In/h} \cdot \text{"on"} \leq 10 \text{ In/h} \cdot \text{V}$ Closing time for rated travel and signal pressure range (K _{vs} value 0.14) $0.2 \dots 1 \text{ bar}$ $0.2 \dots 1 \text{ bar}$ $0.3 \dots$	<u>'</u>			6 V dc			<u> </u>		24 V dc	
Signal "1" (on) 4) $\leq 5.4 \text{ V}$ $\leq 9.6 \text{ V}$ $\leq 18.0 \text{ Maximum permissible electrical signal}$ Maximum permissible electrical signal 28 V 25 V 32 V Internal resistance R; at $20 ^{\circ}\text{C}$ 2909Ω 5832Ω 11714Ω Air consumed in the steady stateAdditionally with positioner "off" $\leq 60 \text{ln/h} \cdot \text{"on"} \leq 10 \text{ln/h}^{-1}$ Closing time for rated travel and signal pressure range (Kvs value 0.14) 700cm^2 700cm^2 700cm^2 120cm^2 110cm^2 <	•									
Maximum permissible electrical signal 28 V 25 V 32 V Internal resistance R _i at 20 °C 2909 Ω 5832 Ω 11714 Ω Air consumed in the steady state Additionally with positioner "off" ≤ 60 I _n /h · "on" ≤ 10 I _n /h · "on" ≤ 0.5 s 240 cm² 350 cm² 700 cm² Closing time for rated travel and signal pressure range (K _{vs} value 0.14) 0.2 1 bar ≤ 0.5 s ≤ 0.8 s ≤ 1.1 s ≤ 2 s 0.4 2 bar ≤ 0.5 s ≤ 2 s ≤ 2.5 s ≤ 2.5 s ≤ 2.5 s ≤ 2.5 s Analog Output current 4 20 mA										
Internal resistance R _i at 20 °C		ectrical signal						-		
Air consumed in the steady state Additionally with positioner "off" $\le 60 \text{ ln/h} \cdot$ "on" $\le 10 \text{ ln/h}^{-1} \cdot$ Closing time for rated travel and signal pressure range (K_{vs} value 0.14) Type 3277 Pneumatic Actuator 120 cm ² 240 cm ² 350 cm ² 700 cm ² (K_{vs} value 0.14) Signal pressure range (K_{vs} value 0.14) Si	<u>'</u>							1		
Closing time for rated travel and signal pressure range (K_{vs} value 0.14) Analog Output current Type 3277 Pneumatic Actuator 120 cm² 240 cm² 350 cm² 700 350 cm² 350 cm² 700 350 cm² 350 cm					الريناد					
for rated travel and signal pressure range (K _{vs} value 0.14)		·	Λ al.,t		· · · · ·	<u> </u>			700 cm ²	
signal pressure range (K _{vs} value 0.14) $ \frac{0.4 \dots 2 \text{ bar}}{0.6 \dots 3 \text{ bar}} \qquad \frac{0.5 \text{ s}}{0.6 \dots 3 \text{ bar}} \qquad \frac{0.5 \text{ s}}$			ACTUATOR							
$(K_{vs} \text{ value } 0.14)$ $0.4 \dots 2 \text{ bdr}$ $0.6 \dots 3 \text{ bar}$ $0.6 \dots 3 \text{ bar}$ $0.6 \dots 2 \text{ bar}$ $0.6 \dots 3 \text{ bar}$ $0.7 \dots 3 \dots $									≤ 4 s	
Analog Output current 4 20 mA									≤ 8 s	
	A 1			0)	-				≤ 5 s	
position transmitter Permissible load II. – 12 V										
$R_{B} = \frac{3}{20} \frac{12}{\text{mA}}$	position transmitter	Permissible load		$R_B = \frac{U_s - 12 \text{ V}}{20 \text{ mA}}$						
Power supply (Two-wire system 24 V) Voltage range 12 45 V The pos. transmitter may only connected to a certified intrinsic circuit 5			′)				connected to a			

¹⁾ For minimum adjusted pressure regulator
2) Special version: Up to -45 °C on request (for Ex-versions, see Table 2)
3) Direct voltage signal at -25 °C
4) Direct voltage signal at +80 °C
5) E.g., via SAMSOMATIC Type 994-0103-CS-412 Loop Isolator or Type 994-0103-CMC-0303-5 Direct-Current Disconnector

Table 2 · Technical data for Type of Protection EEx ia II C

7,							
Electropneumatic converter (Type 3767 i/p Positioner only)							
Maximum values for:	Connection to certified intrinsically safe circuits						
U ₀		28	V		2	.5 V	
l ₀	85 ı	nΑ	100 r	nΑ	15	0 mA	
P	_		_		1	W	
Internal inductance and c	apacitan	ce negl	igibly sn	nall			
Inductive limit switches							
Maximum values for:	Connection circuits	tion to	certified	intrin	sicall	y safe	
U ₀			16 V				
lo lo			52 m	4			
P			169 m\	W			
Internal inductance	$L_i = 1$	00 μΗ	(130 μΗ	with	conn	ector)	
Internal capacitance	C _i =	60 nF	(80 nF v	vith c	onne	ctor)	
Solenoid valve							
Nominal signal	6	•	12 '		24 V		
Maximum values for:	Connect circuits	tion to	certified	intrin	sicall	y safe	
U ₀ (V)	25	27	28	3	0	32	
I ₀ (mA)	150	125	115	10	00	90	
Internal inductance and c	apacitan	ce negl	igibly sn	nall			
Analog position transmit	ter						
Maximum values for:	Connection safe cir		a certifie	ed int	rinsico	ally	
U ₀			25 V				
l ₀			100 m	A			
P			0.8 W	/			
Internal inductance and c	apacitan	ce negl	igibly sn	nall			
Permissible ambient temp	peratures	3					
Temperature class		T 6		Т	5	T 4	
Control current (mA) (Type 3767 only)	85	100	150		00 50	100 150	
Permissible ambient temperature	60 °C	55 °C	60 °C	70	°C	80 °C	
Permissible ambient temperature with analog position transmitter	60 °C 70 °C 70				70 °C		

Metal tag Switch B Switch B Switch A 34 32 1.2 33 34 Metal tag Switch A Fig. 9 · Inductive limit switches (proximity switches)

Accessories

The positioners can optionally be equipped with the following accessories.

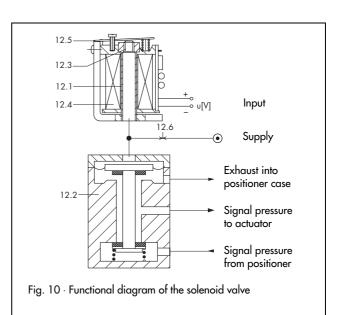
Positioner with inductive limit switches (Fig. 9)

This positioner version has a rotary shaft (1.2) with two adjustable metal tags (33) for inductively actuating the proximity switches (34). The switches are infinitely adjustable and can be overridden. To operate them, corresponding transistor relays are to be connected in the output circuit.

The proximity switches can also be subsequently retrofitted.

Positioner with solenoid valve (Fig. 10)

The positioners can be fitted with an intrinsically safe, pilot-controlled solenoid valve - also along with the inductive limit switches. When the positioner is equipped with this solenoid valve, the control valve can be moved in the fail-safe position independent of the positioner's output signal.


The solenoid valve essentially consists of an electropneumatic converter (12.1) and a 3/2-way solenoid valve (12.2). If a control signal corresponding to the binary signal 0 (off) is applied to the input, the following occurs: The nozzle (12.3) of the electropneumatic converter is opened; the signal pressure p_{st} is blocked; and air is vented out of the actuator. The force of the compression springs installed in the actuator move the control valve in the predetermined fail-safe position.

If a control signal corresponding to binary signal 1 (on) is applied to the input, the relay coil (12.4) is energized, and the flapper plate (12.5) closes the nozzle (12.3). The increasing cascade pressure switches over the 3/2-way valve (12.2). In this position, the signal pressure p_{st} is connected through to the actuator. The control valve is in control operation.

The solenoid valve can also be subsequently retrofitted.

Legend to Figs. 9 and 10

1.2	Rotary shaft	12.5	Flapper plate
12	Solenoid valve	12.6	Restriction
12.1	Electropneumatic (e/p) converter		
12.2	3/2-way solenoid valve	32	Adjusting screw
12.3	Nozzle	33	Metal tag
12.4	Relay coil	34	Proximity switch

T 8355 EN

Positioner with analog position transmitter

Because of the amount of space that the position transmitter requires, note that this option cannot be combined with installed limit switches or a solenoid valve!

With the position transmitter, the position of the throttling member of the control valve (i.e., valve travel or opening angle) is converted into a proportional output signal from 4 to 20 mA. Three basic types of limit positions are signalized: Control valve opened; control valve closed; and all intermediate positions.

Attachment to linear and rotary actuators (Figs. 12 and 13)

With linear-motion actuators, the positioner can be attached either directly (Type 3277 Pneumatic Actuator) or according to DIN IEC 534 (NAMUR) (Type 271 Pneumatic Actuator). With rotary-motion actuators, the positioner is attached with an interface according to VDI/VDE 3845, together with an intermediate piece.

Combining the positioner and the actuator (Fig. 11)

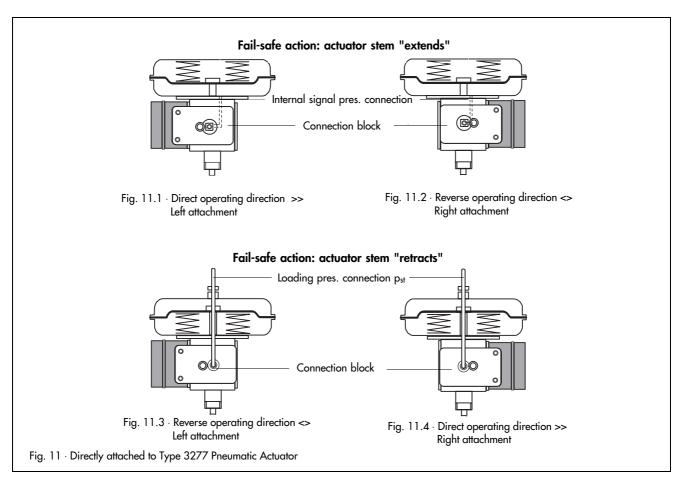
How the positioner and actuator can be arranged depends on the operating direction of the reference input signal (p_e) and the output signal pressure (p_{st}), plus the fail-safe position of the actuator, namely:

- Actuator stem "extends"
- Actuator stem "retracts"

Direct attachment to Type 3277 Pneumatic Actuator (Fig. 4)

This method of attachment provides the benefit of being a self-contained, preconfigured actuator-positioner unit. Direct attachment of actuator sizes 240, 350 and 700 cm² requires a connection block (Fig. 11).

With actuator version actuator stem "extends," the loading pressure pst from the positioner is introduced to the bottom diaphragm case via the connection block and a hole in the actuator yoke. If the spring chamber need be vented with the exhaust air of the positioner, the air can be connected to the connection block using a prefabricated pipe.


With actuator version actuator stem "retracts," the loading pressure pst from the positioner is introduced to the top diaphragm case via a prefabricated pipe. Air can be exhausted from the bottom diaphragm chamber (spring chamber) without additional measures via an internal hole.

With the Type 3277-5 Pneumatic Actuator (actuator size 120 cm²), the loading pressure is connected via a rear hole in the positioner, therefore eliminating external piping.

Table 3 · Direct attachment: travel and measuring spring

Actuator size in cm ²	Travel in mm	Meas. spring
120/240/350	7.5	2
120/240/350	15	1
700	15	2
700	30	1

The positioner is delivered with measuring spring 1; measuring spring 2 can be found in the accessories.

Attachment according to DIN IEC 534 (Figs. 3 and 12)

The positioners can be attached to actuators with casted yokes (Fig. 3) (e.g., Series 240, 250 and 280) and valves with rod-type yokes (Fig. 12) with the aid of the mounting adapter (15). A clamping plate (15.1) is additionally required for valves with rod-type yokes.

By selecting the appropriate lever (1) and link point on the lever (16), the positioners can be matched to different travels in the range from 7.5 to 120 mm.

There is no prescribed mounting position for the positioner. The operating direction is determined by how the positioner and the adapter are arranged and how the internal turnboard is positioned.

The measuring spring is to be selected according to Table 4.

Table 4 Choosing the measuring spring for the travel range required: Attachment according to **DIN IEC 534**

Travel mm	Measuring spring
7.5 15	2
> 15 60	1
22 120	1

The positioner is delivered with measuring spring 1; measuring spring 2 can be found in the accessories.

Attachment to rotary actuators (Fig. 13)

The positioners can be attached to the Type 3278 Rotary Actuator via an intermediate piece (2). Attachment to other rotary actuators is possible with an interface according to VDI/VDE 3845. Via the cam disk (7), the rotary motion of the actuator is converted into a linear motion required by the positioner. A follower roll (3) is attached to the lever (5) of the positioner in order to detect the cam disk. Various cams are available depending on the control valve characteristic required (e.g., linear or equal percentage).

Double-acting, springless (no spring return) actuators require, in addition, a pneumatic reversing amplifier which produces two opposed signal pressures.

Choose the measuring spring as follows:

Reference input variable for split-range operation:

- Measuring spring 1

Reference input variable for normal (full) signal range:

Measuring spring 2

6

The positioner is always delivered with measuring spring 1; measuring spring 2 is included in the mounting kit for rotary actuators.

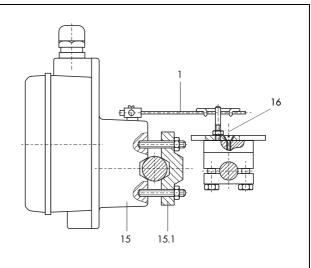
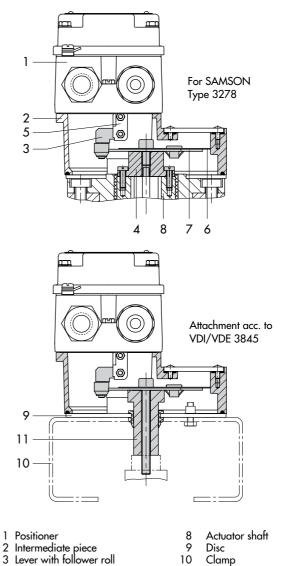



Fig. 12 · How to attach to valves with rod-type yokes

- 4 Mounting adapter
- Transmission lever
- Scale Cam disk

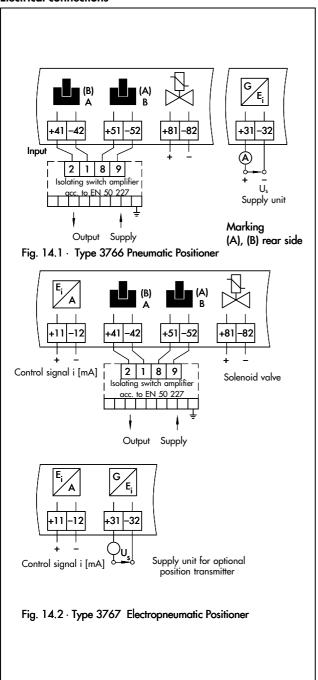
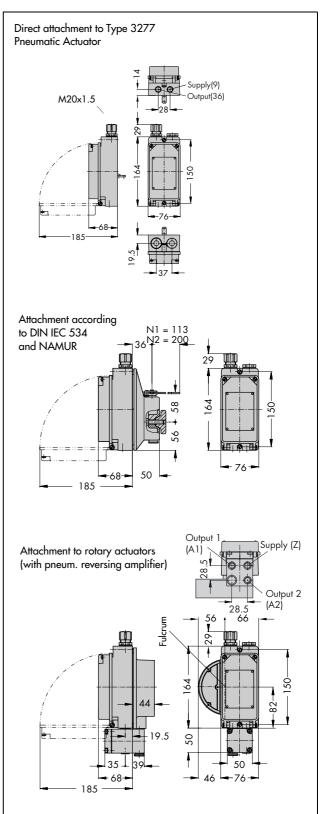

- Clamp Coupling 10
- Adapter
- Clamping plate 15.1 Slide

Fig. 13 · How to attach to rotary actuators


Materials (WN = Material Number according to DIN)

Case Special version	Die-cast aluminum chromized and plastic-coated CrNiMo steel, WN 1.4404 (316 L)
External parts	Stainless steel WN 1.4571 and WN 1.4104
Measuring diaphragm	Fluorosilicone rubber

Electrical connections

Dimensions in mm

Summary of the approved explosion protection certificates for the Type 3766 Positioner

Certificate type	Certificate number	Date	Comments
Certificate of Conformity	PTB No. Ex-89.C.2165	1989-11-06	EEx ia IIC T6
First Addendum		1991-02-12	Position transmitter
Second Addendum		1992-01-17	Higher Ex i parameters
Third Addendum		1993-11-22	-45 °C ambient temperature
Fourth Addendum		1995-06-13	Round connector
Fifth Addendum		1997-07-11	Solenoid valve, position transmitter
SEV Certificate	98.5. 50771.04	1998-04-24	EEx ia IIC T4-T6
GOST Certificate	A-0393	1996-07-05	Valid until 2001; Ex ia IIC T6
CSA Certificate	LR 54227-11	1991-01-29	Class I; Groups A, B, C, D
Enclosure 3		1992-04-21	Class I; Div. 2; Groups A, B, C, D
	LR 54227-17	1993-02-03	Position transmitter
	LR 54227-27	1997-09-17	Groups A, B, C, D
FM Certificate	J.I. 2 V 9 A9.AX	1991-11-18	Class I, II, III; Div. 1, Groups A, B, C, D, E, F, G
	J.I. 4W9 A0.AX	1993-04-22	Position transmitter
		1998-10-20	Revision position transmitter
NEMA 3R	J.I. 0W 4 A0.AX	1991-02-19	

Please refer to Data Sheet T 6116 EN for EEx d certification for the Type 6116 i/p Converter (Fig. 2).

Summary of the approved explosion protection certificates for the Type 3767 Positioner

Certificate type	Certificate number	Date	Comments
Certificate of Conformity	PTB No. Ex-89.C.2166	1989-11-06	EEx ia IIC T6
First Addendum		1991-02-12	Position transmitter
Second Addendum		1992-01-17	Higher Ex i parameters
Third Addendum		1993-01-15	Additional Ex i values
Fourth Addendum		1993-11-22	−45 °C ambient temperature
Fifth Addendum		1995-06-13	Type of connection altered
Sixth Addendum		1997-07-11	Internal design and nameplate altered
SEV Certificate	98.5 50771.05	1998-04-24	EEx ia IIC T4-T6
GOST Certificate	A-0394	1996-07-05	Valid until 2001
CSA Certificate	LR 54227-11	1991-01-29	Class I; Groups A, B, C, D
Enclosure 3		1992-04-21	Class I; Div. 2
	LR 54227-17	1993-02-03	Position transmitter
	LR 54227-26	1997-09-17	Div. 1; Groups A, B, C, D, E, F, G
FM Certificate	J.I. 2 V 9 A9.AX	1991-11-18	Class I, II, III; Div. 1; Groups A, B, C, D, E, F, G
NEMA 3R	J.I. 0W 4 A0.AX	1992-02-19	
FM Certificate	J.I. 4 W 9 A0.AX	1993-04-22	Position transmitter
	J.I. 5Y2 A3.AX	1995-04-26	Div. 2
		1998-10-20	Revision position transmitter
AUS Certificate	1478 X	1993-08-04	Ex ia IIC T6, Class I, Zone 0
	EX 1482	1993-08-04	Ex n IIC T6, Class I, Zone 2
JIS Certificate	C-13674	1999-07-09	Ex ia IIC T6

Nomenclature for ordering Type designation 3766- □ □ □ □ 0 1 1	ᄆᄆᄋ	· P	Q
Type designation 3766-	亡亡○	ф	ф
Explosion protection Without 0 EEx ia IIC T6 1 CSA/FM 3			
Accessories Inductive proximity switch Without 0 With two Type SJ2-SN 2 Solenoid valve Without 0 6 V dc 2 12 V dc 3 24 V dc 4 Analog pos. transmitter 6 0			
Pneumatic connection NPT 1/4 – 18	1 2		
Electrical connection M 20x1.5 blue M 20x1.5 black Connector HAN 7D,	1 2 4		
	-		
Special version None Enclosure made of CrNiMo steel		0	
Reference input signal (only for Type 3767) 4 to 20 mA 0 to 20 mA 1 to 5 mA			1 2 3
Positioner only functioning as an analog positioner only functioning as an analog position of the state o			er O

Accessories

Adapter to NPT 1/2 for the electrical connections Measuring spring 2

Additional specifications

Without/with pressure gauge for monitoring the signal pressure and supply air

Specify when mounting on a control valve:

Adjusted reference input signal

Operating direction: direct (increasing-increasing) or reverse (increasing-decreasing)

Specify for devices with inductive limit switches: Metal tag in the active zone (contact closed)/ Metal tag out of the active zone (contact open)

Specify for direct attachment to the Type 3277 Pneumatic Actuator:

Actuator size: 120/240/350/700 cm²

Specify for attachment according to DIN IEC (NAMUR):

Travel: ...mm

Specify for attachment to valves with rod-type yokes:

Travel: ...mm Rod diameter: ...mm

Specify for attachment to Type 3278 Rotary Actuators: Actuator sizes $160 \text{ or } 320 \text{ cm}^2$

Rotary actuator according to VDI/VDE 3845, single-acting or Rotary actuator according to VDI/VDE 3845, double-acting

With linear control valve characteristic

With equal percentage control valve characteristic

Opening angle 70°/75°/90°

When the positioner is delivered without a specific arrangement to a certain control valve, refer to the "Mounting and operating instructions" EB 8355-1 EN (for Type 3766 Pneumatic Positioner) or EB 8355-2 EN (for Type 3767 Electropneumatic Positioner).

Specifications subject to change without notice.

